If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+208.2x-954.8=0
a = 2; b = 208.2; c = -954.8;
Δ = b2-4ac
Δ = 208.22-4·2·(-954.8)
Δ = 50985.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(208.2)-\sqrt{50985.64}}{2*2}=\frac{-208.2-\sqrt{50985.64}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(208.2)+\sqrt{50985.64}}{2*2}=\frac{-208.2+\sqrt{50985.64}}{4} $
| 2x^2+208.2x+-954.8=0 | | (X-2)x=2^3 | | (X-2)x=2*3 | | 36x-12=12x+36 | | 4t^2-6t-8=-10 | | 4t^2-6t-8=10 | | x-5=7+x | | x+0.5x+0.2x=51 | | 8x+8=4(x+5) | | 2*x-6=6*(x+3) | | 4=−1/3x−10 | | -9(v+4)+4v+6=8v+8 | | 50000/0.5=10^n | | 4t^2-6t-18=0 | | 4t^2-6t+2=0 | | (2*x+53.2)*(x+77.5)=4123 | | 4t^2-6t-8=0 | | X4-2x3-13x2+14x+24=0 | | 5p+79p=-21 | | 36y-12-35y+12=81 | | 5=3/5x-7 | | 19-(2x+3)=2(x=3)+x | | 5x+3x-9=2x-27 | | 3(x-5)+2×=5×-15 | | 7(4x+8)=196 | | (42a^2+55a-25)=0 | | 3x^+4x-18=0 | | 5^5x=9^x+3 | | 4x+8x-2x=5 | | n+31/2=8 | | 5x-3=3(x+7)+3x= | | 12^-7x=11 |